Primary Invariants of Hurwitz Frobenius Manifolds

نویسنده

  • P. DUNIN-BARKOWSKI
چکیده

It is a classical result that flat coordinates for a Hurwitz Frobenius manifold can be obtained as periods of a differential along cycles on the domain curve. We generalise this construction to primary invariants of the Hurwitz Frobenius manifolds. We show that they can be obtained as periods of multidifferentials along the same cycles. The multidifferentials are obtained via the topological recursion procedure. CONTENTS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“Real doubles” of Hurwitz Frobenius manifolds

New family of flat potential (Darboux-Egoroff) metrics on the Hurwitz spaces and corresponding Frobenius structures are found. We consider a Hurwitz space as a real manifold. Therefore the number of coordinates is twice as big as the number of coordinates used in the construction of Frobenius manifolds on Hurwitz spaces found by B.Dubrovin more than 10 years ago. The branch points of a ramified...

متن کامل

Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds and Its Applications

In this work we find the isomonodromic (Jimbo-Miwa) tau-function corresponding to Frobenius manifold structures on Hurwitz spaces. We discuss several applications of this result. First, we get an explicit expression for the G-function (solution of Getzler’s equation) of the Hurwitz Frobenius manifolds. Second, in terms of this tau-function we compute the genus one correction to the free energy ...

متن کامل

New Frobenius Structures on Hurwitz Spaces in Terms of Schiffer and Bergmann Kernels

New family of flat potential (Darboux–Egoroff) metrics on the Hurwitz spaces and corresponding Frobenius structures are found. We consider a Hurwitz space as a real manifold. Therefore the number of coordinates is twice as big as the number of coordinates used in the construction of Frobenius structure on Hurwitz spaces found by B. Dubrovin more than 10 years ago. The branch points of a ramifie...

متن کامل

On G-function of Frobenius manifolds related to Hurwitz spaces

Abstract. The semisimple Frobenius manifolds related to the Hurwitz spaces Hg,N(k1, . . . , kl) are considered. We show that the corresponding isomonodromic tau-function τI coincides with (−1/2)power of the Bergmann tau-function which was introduced in a recent work by the authors [8]. This enables us to calculate explicitly the G-function of Frobenius manifolds related to the Hurwitz spaces H0...

متن کامل

Deformations of Frobenius structures on Hurwitz spaces

Deformations of Dubrovin’s Hurwitz Frobenius manifolds are constructed. The deformations depend on g(g+1)/2 complex parameters where g is the genus of the corresponding Riemann surface. In genus one, the flat metric of the deformed Frobenius manifold coincides with a metric associated with a one-parameter family of solutions to the Painlevé-VI equation with coefficients (1/8,−1/8, 1/8, 3/8) . A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016